

BOAA TIMTBEBASI

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ

ВОДА ПИТЬЕВАЯ методы анализа

Издание официальное

ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва — 1994

ОТ ИЗДАТЕЛЬСТВА

Сборник «Вода питьевая. Методы анализа» содержит стандарты, утвержденные до 1 августа 1994 г.

В стандарты внесены все изменения, принятые до указанного срока.

Текущая информация о вновь пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускасмом ежемесячно информационном указателе «Государственные стандарты».

B $\frac{2103000000-048}{085(02)-94}$ Без опубл.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

вода питьевая

Метод определения массовой концентрации бериялия

ΓΟCT 18294—89

Drinking water. Method for determination of beryllium mass concentration

OKCTY 9109

Дата введения 01.07.90

Настоящий стандарт распространяется на питьевую воду и устанавливает флуоресцентный метод определения массовой концентрации бериллия.

Метод основан на измерении интенсивности флуоресценции соединения, образующегося при взаимодействии бериллия с морином в щелочной среде.

Предел обнаружения бериллия с доверительной вероятностью $P\!=\!0.95$ составляет 0.05 мкг/дм³ при объеме пробы 1000 см³, диапазон измерений без разбавления пробы составляет 0.05— 1 мкг/дм³.

1. МЕТОД ОТБОРА ПРОБ

Отбор проб — по ГОСТ 24481. Объем пробы воды для двух параллельных определений массовой концентрации бериллия должен быть не менее 2000 см³. Пробу воды консервируют добавлением 3 см³ концентрированной азотной кислоты плотностью 1,40 г/см³ (в расчете на 1000 см³ пробы).

2. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

Флуориметр любой марки с первичным светофильтром, выделяющим линию спектра 366 нм (светофильтры СЭС-10, УФС-2 и др.), и вторичным светофильтром, обеспечивающим пропускание максимума флуоресценции при длине волны 595 нм (светофильтры ЖС-17 и др.).

ΓΟCT 18294-89

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 20—200 г.

Электроплитка.

Термостат.

Сито с сеткой по ГОСТ 6613 диаметром ячеек 0,1 мм.

Воронки лабораторные по ГОСТ 25336.

Воронки Бюхнера по ГОСТ 9147.

Колбы мерные по ГОСТ 1770 вместимостью 100, 250, 1000 см 3 , 2-го класса точности.

Насосы водоструйные лабораторные стеклянные по ГОСТ 25336.

Пипетки мерные с делениями по ГОСТ 29227, вместимостью 1, 2, 5, 10 см³, 2-го класса точности, исполнения 1, 2, 8.

Пробирки мерные П-2—10—0,1 ХС по ГОСТ 1770.

Стаканы стеклянные лабораторные по ГОСТ 25336 вместимостью $50,\ 100,\ 500,\ 1000\ \text{см}^3.$

Цилиндры мерные по ГОСТ 1770, вместимостью 100, 250, 1000 см³.

Мешалка магнитная.

Чашки выпарительные по ГОСТ 9147.

Фильтры беззольные «белая лента» диаметром 5, 7 и 11 см.

Аммиак водный по ГОСТ 3760, ч. д. а.

Бериллий сернокислый по ТУ 6-09-2561.

Железо (треххлористое 6-водное) по ГОСТ 4147, ч. д. а.

Кальций хлористый щестиводный по ТУ 6-09-3834.

Кислота азотная по ГОСТ 4461, плотностью 1,40 г/см³, ч. д. а. Кислота аскорбиновая.

Кислота борная по ГОСТ 9656, ч. д. а.

Кислота лимонная моногидрат и безводная по ГОСТ 3652, ч. д. а.

Кислота серная по ГОСТ 4204, плотностью 1,83 г/см³, ч. д. а. Кислота соляная по ГОСТ 3118, плотностью 1,19 г/см³, ч. д. а. Метиловый оранжевый по ТУ 6—09—5171.

Натрия гидроокись по ГОСТ 4328, ч. д. а.

Натрий уксуснокислый 3-водный по ГОСТ 199, ч. д. а.

Водорода перекись по ГОСТ 10929, ч. д. а.

Силикагель технический КСК-Г по ГОСТ 3956.

Спирт этиловый ректификованный по ГОСТ 5962.

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652, ч. д. а.

Морин.

Вода дистиллированная по ГОСТ 6709.

Бумага универсальная индикаторная.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление раствора серной кислоты молярной концентрации эквивалента 0,001 моль/дм³ Раствор готовят из фиксанала серной кислоты разбавлением в 100 раз.

3.2. Приготовление раствора соляной кислоты

молярной концентрации 1 моль/дм³

100 см³ концентрированной соляной кислоты приливают в 1 дм³ дистиллированной воды. Устанавливают концентрацию раствора и разбавляют дистиллированной водой до концентрации 1 моль/дм³.

3.3. Приготовление раствора соляной кислоты.

молярной концентрации 0,1 моль/дм³

Раствор готовят десятикратным разбавлением раствора соляной кислоты концентрации 1 моль/дм³ или из фиксанала.

3.4. Приготовление раствора аскорбиновой кислоты с массовой долей 1 %

1 г аскорбиновой кислоты растворяют в 100 см³ дистиллированной воды.

3.5. Приготовление раствора перекиси водо-

рода с массовой долей 5%

К 100 см³ дистиллированной воды приливают 20 см³ перекиси водорода с массовой долей 33%.

3.6. Приготовление раствора аммиака с мас-

совой долей 5%

Раствор готовят разбавлением раствора аммиака с массовой долей 25% в пять раз дистиллированной водой.

3.7. Приготовление раствора гидроокиси нат-

рия молярной концентрации 2 моль/дм³

- 80 г гидроокиси натрия растворяют в дистиллированной воде и доводят объем до 1 дм³. Концентрацию проверяют по раствору соляной кислоты (1 моль/дм³).
- 3.8. Приготовление рабочего раствора хлорного железа
- 24 г FeCl₃·6H₂O растворяют в мерной колбе или измерительном цилиндре вместимостью 250 см³ в дистиллированной воде, подкисленной 10 см³ раствора соляной кислоты (1 моль/дм³); 1 см³ раствора содержит 20 мг Fe.

3.9. Приготовление раствора трилона Б молярной концентрации эквивалента 0,4 моль/дм³

75 г трилона Б растворяют в дистиллированной воде и доводят объем до 1 дм³. Мутный раствор фильтруют.

3.10. Приготовление раствора хлористого кальция молярной концентрации эквивалента 5 моль/дм³

550 г CaCl₂- $6H_2O$ растворяют в дистиллированной воде и доводят объем до 1 дм³.

3.11. Приготовление раствора уксуснокислого

натрия молярной концентрации 4 моль/дм³

545 г СН₃СООNa-3H₂О растворяют в дистиллированной воде и доводят объем до 1 дм³. Мутный раствор фильтруют.

3.12. Приготовление ацетатного буферногора-

створа (рН 6,0)

Смешивают 50 см³ раствора уксуснокислого натрия (4 моль//дм³) и 60 см³ раствора соляной кислоты (0,1 моль/дм³).

3.13. Приготовление боратного буферного рас-

твора (pH = 13.5)

- 28,6 г борной кислоты (H₃BO₃) и 96,0 г гидроокиси натрия растворяют последовательно в дистиллированной воде и доводят объем до 1 дм³.
- 3.14. Приготовление комплексующего раствора 2,5 г лимонной кислоты и 5 г трилона Б переносят в мерную колбу вместимостью 100 см³; растворяют примерно в 80 см³ дистиллированной воды. Если трилон Б не растворяется, прибавляют по каплям раствор гидроокиси натрия (2 моль/дм³) до растворения трилона Б, объем доводят до 100 см³ дистиллированной водой.
- 3.15. Приготовление спиртового раствора морина с массовой долей 0,02%
- 0,020 г морина растворяют в 100 см³ чистого этилового спирта; раствор хранят в темном месте. Раствор устойчив в течение трех месяцев.
 - 3.16. Приготовление силикагеля

Употребляемый для анализа силикагель КСК-Г должен иметь размер частиц 0,1—0,01 мм и не содержать железа.

Крупный силикагель размалывают и просеивают через сито 0.1 мм. Прошедший через сито силикагель помещают в стеклянный или полиэтиленовый сосуд достаточной высоты (стакан, цилиндр) и заливают водой до высоты 25 см от уровня поверхности силикагеля. Содержимое сосуда интенсивно взбалтывают и оставляют в покое. Через 20 мин взвесь декантируют и вновь заливают водой до высоты 25 см. Эту операцию повторяют до тех пор, пока сливаемая жидкость будет прозрачной (обычно бывает достаточно 3-4 сливаний). Оставшийся в сосуде силикагель будет иметь заданный размер зерен (0,1—0,01 мм). Затем силикагель очищают от железа обработкой горячим раствором соляной кислоты (1 моль/дм³) в течение 10-20 мин (на 100 г силикагеля берут 300—400 см³ кислоты). Отфильтровывают силикагель с помощью водоструйного насоса и проверяют фильтрат на содержание окисного железа. При наличии железа обработку силикагеля кислотой

повторяют до отрицательной реакции на железо (пользуются роданидным методом и др.).

Затем отмывают силикагель от соляной кислоты дистиллированной водой до нейтральной реакции по метиловому оранжевому. Промытый силикагель обрабатывают 5 мин при помешивании 300—400 см³ ацетатного буфера (рН ~6,0). После отстаивания раствор декантируют и силикагель вновь обрабатывают разбавленным ацетатным буфером, отфильтровывают с помощью водоструйного насоса, промывают два раза дистиллированной водой по 200 см³, снимая каждый раз силикагель с воронки в стакан с водой. Промытый силикагель хорошо отсасывают от раствора на воронке, переносят в фарфоровые чашки и высушивают в термостате при 105—110 °С.

3.17. Приготовление градуировочных раство-

ров бериллия

Навеску 1,965 г сернокислого бериллия (BeSO₄·4 H₂O) растворяют в воде, содержащей 1 см³ концентрированной серной кислоты, и доводят объем раствора водой до 1 дм³. Получают основной градуировочный раствор массовой концентрации бериллия 100 мкг/см³. Раствор хранится в склянке с пришлифованной пробкой. Срок хранения — до трех месяцев.

Рабочий градуировочный раствор массовой концентрации бериллия 0,1 мкг/см³ готовят разбавлением в 1000 раз основного градуировочного раствора путем трехкратного разбавления [10 см³ более концентрированного раствора помещают в мерную колбу вместимостью 100 см³ и доводят до метки раствором серной кислоты (0,001 моль/дм³)]. Этот раствор готовят в день проведения анализа.

4. ПРОВЕДЕНИЕ АНАЛИЗА

Бериллий концентрируют и отделяют от мешающих компонентов путем соосаждения гидроокиси бериллия с гидроокисью железа, растворения осадка и последующей сорбции бериллия силикателем из раствора, содержащего трилон Б и избыток ионов кальция при рН 5,7—6,0. При избытке ионов кальция бериллий замещается последним в соединении с трилоном Б и сорбируется силикагелем. В то же время трилон Б удерживает в растворе элементы, мешающие определению бериллия (хром, медь, алюминий и др.).

В стакан из термостойкого стекла вместимостью 1000 см³ помещают 1000 см³ консервированной подкислением при отборе пробы исследуемой воды, добавляют 4—5 капель раствора перекиси водорода с массовой долей 5 % и 1 см³ раствора хлорного железа. (Если проба не консервировалась при отборе, в склянку с исследуемой водой приливают концентрированную азотную кислоту из

расчета 3 см³ на 1 дм³ анализируемой воды, тщательно перемешивают и после этого переносят пробу в термостойкий стакан и далее — по прописи методики.)

Нагревают раствор до 70—80 °С и при интенсивном перемешивании (с помощью магнитной мешалки) нейтрализуют раствором аммиака с массовой долей 5 %, до слабого запаха. Раствор должен иметь рН не выше 8 (проверка по универсальной индикаторной бумаге или потенциометрически, или по бумаге «рифан»).

Для получения плотного, хорошо фильтруемого осадка гидроокиси железа к раствору при помещивании прибавляют около 1,0 г силикателя.

Дают осадку осесть. Осветленный раствор декантируют, фильтровывают выпавшую гидроокись железа и силикагель через фильтр «белая лента» и промывают два-три раза подаммиаченной до рН 7-8 дистиллированной водой. Осадок гидроокиси железа и силикагеля смывают дистиллированной водой с неразвернутого фильтра в стакан вместимостью 100—150 см³ (объем при этом должен составлять 25—40 см³), добавляют 10 см³ раствора соляной кислоты (1 моль/дм3) и нагревают раствор на плитке $(t\sim60\,^{\circ}\text{C})$, не доводя раствор до кипения, до полного растворения гидроокиси железа. Затем силикагель отфильтровывают через тот же фильтр, промывают два-три раза соляной (1 моль/дм3). Отработанный силикагель может быть повторно использован после регенерации, которая проводится так же, как и очистка (см. п. 3.17).

К фильтрату прибавляют 5 см³ раствора трилона Б (0,4 моль/дм³), 2 см³ раствора хлористого кальция (5 моль/дм³) и нейтрализуют раствором аммиака с массовой долей 5 % до перехода зеленой окраски в желтую. Если прибавлен избыток аммиака (раствор становится розовым), подкисляют содержимое стакана раствором соляной кислоты (1 моль/дм³) до перехода розовой окраски в зеленую и вновь нейтрализуют аммиаком по каплям до появления желтой окраски.

Затем прибавляют 10 см³ ацетатного буфера, перемешивают в течение 1—2 мин. Отфильтровывают силикагель через фильтр «желтая лента» и повторяют сорбцию бериллия в фильтрате с новой порцией силикагеля (около 0,5 г).

Затем снова отфильтровывают силикагель через тот же фильтр, на котором находится первая порция силикагеля. Промывают силикагель три-четыре раза дистиллированной водой, смывают силикагель с неразвернутого на воронке фильтра небольшим количеством дистиллированной воды в стаканчик вместимостью 50 см³, прибавляют 1 см³ раствора соляной кислоты (1 моль/дм³) и нагревают на плитке 5—10 мин, не доводя раствор до кипения. Отфильтровывают раствор с силикагелем через тот же фильтр в градуиро-

ванную на 10 см³ пробирку вместимостью 15—20 см³, промывают стаканчик и силикагель на фильтре небольшим количеством дистиллированной воды, доводя объем до 10 см³. Если объем раствора превысил 10 см³, его переносят в стаканчик, где находился силикагель, упаривают до 5 см³ и переливают в градуированную пробирку, доводя объем до 10 см³. Прибавляют 0,5 см³ свежеприготовленного раствора аскорбиновой кислоты с массовой долей 1%, 0,5 см³ раствора гидроокиси натрия (2 моль/дм³), 1 см³ комплексующего раствора, 0,20 см³ спиртового раствора морина с массовой долей 0,02 % и 1 см³ боратного буферного раствора.

Флуоресценцию раствора измеряют через 5—10 мин, используя флуориметр. Яркость свечения развивается в течение 5—10 мин и затем медленно снижается. На протяжении первого часа

она уменьшается на 5-10 %.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Для построения градуировочного графика готовят шкалу рабочих градуировочных растворов. Для этого в ряд стаканов вместимостью по 1000 см³ отбирают 0,0; 0,5; 1,0; 2,0; 4,0 см³ рабочего градуировочного раствора бериллия, что соответствует 0,00; 0,05; 0,10; 0,20; 0,40 мкг бериллия.

В каждый стакан приливают 1000 см³ дистиллированной воды, 3 см³ концентрированной азотной кислоты и далее анализируют

по приведенной методике.

По полученным результатам строят градуировочный график, откладывая по оси абсцисс содержание бериллия в мкг, по оси ординат — показания прибора. График должен иметь прямолинейный характер.

Холостые пробы могут обладать незначительной флуоресценци-

ей, обусловленной чистотой реактивов.

Построение градуировочного графика проводят в день анализа

проб.

5.2. Массовую концентрацию бериллия (X), мкг/дм³, вычисляют по формуле

$$X = \frac{m \cdot 1000}{V}$$

где *m* — масса бериллия в анализируемом объеме пробы, найденная по градуировочному графику, мкг;

V — объем воды, используемый для анализа, см 3 .

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 30%.

5.3. Нормы погрешности измерений при соблюдении требований настоящего стандарта соответствуют требованиям ГОСТ 27384. В

диапазоне концентрации бериллия 0,05—0,1 мкг/дм³ норма точности составляет 80 %.

- 5.4. Значение систематической составляющей погрешности измерений должно быть не более $^{1}/_{3}$ нормы точности (см. п. 5.3).
- 5.5. Точность измерений контролируют путем анализа зашифрованных (в том числе стандартных проб), включенных в каждую партию. Контрольные пробы должны составлять не менее 30% при количестве анализируемых рядовых проб более 15 и 100% при меньшем количестве проб в партии. Стопроцентный контроль проводят также при оценке качества воды в целях возможности ее применения для питьевого водоснабжения при содержании массовой концентрации бериллия на уровне ПДК=0,2 мкг/дм³ (ГОСТ 2874).
- 5.6. Расхождение между основным и контрольным результатами измерения одной пробы (Δ_r) вычисляют по формуле

$$\Delta_r = \frac{c_1 - c_2}{c_1 + c_2} \cdot 100,$$

где c_1 — результат основного измерения;

 c_2 — результат контрольного измерения.

Результат считают удовлетворительным, если фактическое значение Δ_r не превышает норму точности (см. п. 5.3).

5.7. Систематическую погрешность (Δ_s) контролируют по стандартным образцам (не реже двух раз в год, а также при смене оборудования и стандартных растворов) и вычисляют по формуле

$$\Delta_s = \frac{\overline{c} - c_0}{c_0} \cdot 100$$

при числе параллельных определений не менее 15, где \overline{c} — среднее значение измерений;

 c_0 — аттестованное значение содержания бериллия.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством геологии СССР РАЗРАБОТЧИКИ

- В. К. Кирюхин, канд. хим. наук (руководитель темы); И. Ю. Соколов, канд. хим. наук: Л. В. Феньева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 16.03.89 № 520
- 3. Срок первой проверки 1994 г. Периодичность проверки 5 лет
- 4. B3AMEH FOCT 18294-81
- **5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-**ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта	
FOCT 199—78 FOCT 1770—74 FOCT 2874—82 FOCT 3118—77 FOCT 3652—69 FOCT 3760—79 FOCT 3956—76 FOCT 4147—74 FOCT 4204—77 FOCT 4328—77 FOCT 4461—77 FOCT 5962—67 FOCT 6613—86	2 5.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FOCT 6709—72 FOCT 9147—80 FOCT 9656—75 FOCT 10652—73 FOCT 10929—76 FOCT 24104—88 FOCT 24481—80 FOCT 25336—82 FOCT 27384—87 FOCT 29227—91 TY 6—09—2561—77 TY 6—09—3834—80 TY 6—09—5171—84	2 2 2 2 2 2 1 2 5.3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

- Ограничение срока действия снято по Протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации
- 7. ПЕРЕИЗДАНИЕ

СОДЕРЖАНИЕ

TO CT 0074	00 Basa	******	Г			
ΓΟCT 2874-		за качеств		еские трео	ования и 1	конт-
FOCT 3351-				пределения	вкуса, за	паха
	цветн	ости и му	тности .			11
FOCT 4011-					массовой	кон-
TOOT ALEI		ации обще				
FOCT 4151-	~12 вода сти	питьевая.	метод оп	гределения	общей же	29
ΓΟCT 4152-		питьевая.	Метол ог	пределения	массовой	
	цент	ации мыщі	яка .			35
ΓΟCT 4192-	-82 Вода	питьевая.	Методы	определени	я минерал	ьных
FOCT 4045		од ержащих				43
ГОСТ 4245-		питьевая.	методы	определен	ия содерж	ания 50
ΓΟCT 4388-	хлори -72 Вола		 Metoliki on		 массовой	
1001 1000		ации меди		тределения	Maccobon	57
ΓΟCT 4389-		питьевая.		определен	ия содерж	ания
		атов				67
ΓΟCT 4974-		питьевая,	Методы	определен	ия сод е рж	ания
FOCT 19164	марга		· · · · · ·			76
ΓΟCT 18164			метод опр	ределения	содержания	1 cy- 84
FOCT 18165		ОСТАТКА		 пеления	 массовой	
	2004	ации алюм			Maccobon	. 88
FOCT 18190	—72 Вода	питьевая.	Методы	определен	ия содерж	ания
		очного акт	ивного хло	opa [*]		95
FOCT 18293		питьевая.		определен	ия содерж	ания 103
DOCT 10001		а, цинка, с			, , ,	• •
FOCT 18294	—89 Вода	питьевая,	метод оп	ределения	массовои	кон-
FOCT 18301-	79 Вола	ации берил питьевая.		определен	 ия содерж	
1001 10001		очного озо		определен	им содерж	132
FOCT 18308 -				определени	ия содерж	ания
	молиб	бдена .				. 137
FOCT 18309			Метод	определени	ия содерж	ания 142
TO CM 10000		осфатов		• • • • • • • • • • • • • • • • • • • •		
TOCT 18826-		питьевая,	методы	определен	ия содерж	ан ия 148
TOCT 18963-	нитра —73 Вола	питьевая.	. Метолы		бактериолог	иче-
1001 10000	- , ,	анализа			·	155
FOCT 19355			Методы ог	пределения	полиакрил	ами-
	да					179
FOCT 19413		питьевая,		ределения	массовой	кон-
TOCT 23950		ации селен			. , .	* •
1001 29900	,	питьевая. ации строн		ределения	массовой	196
ΓΟCT 24481 -		ации строн питьевая,		nd .	• • •	202
TOCT 24849					 анитарно-ми	кро-
		CMNECKULU			•	207

вода питьевая

Редактор Л. В. Афанасенко Оформление художника В. Г. Лапшина Технический редактор Н. С. Гришанова Корректор В. И. Кануркина

Сдано в наб. 04.08.94. Подп. в печ. 22.09.94. Формат $60\times90^{1}/_{16}$. Бумага типографская. Печать высокая, Усл. п. л. 14,25. Усл. кр.-отт. 14,38. Уч.-изд. л. 13,65. Тираж 1907 экз. Зак. 1513. Изд. № 1534/2 С 1655