ОПРЕДЕЛЕНИЕ СКОРОСТНОГО НАПОРА ВЕТРА НАД АКВАТОРИЯМИ ДЛЯ РАСЧЕТА НАГРУЗОК НА ПОРТОВЫЕ СООРУЖЕНИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

РД 31.33.04 - 84

МИНИСТЕРСТВО МОРСКОГО ФЛОТА

ОПРЕДЕЛЕНИЕ СКОРОСТНОГО НАПОРА ВЕТРА НАД АКВАТОРИЯМИ ДЛЯ РАСЧЕТА НАГРУЗОК НА ПОРТОВЫЕ СООРУЖЕНИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

РД 31.33.04 - 84

РАЗРАБОТАН

Государственным проектно-изискательским и научно-исслеловательским институтом морского транспорта "Союзморниипроект". Зам.директора Союзморниипроекта, д.т.н. Костиков В.Д. Руководитель работи, зав.сектором, к.ф.-м.н. Стрекалов С.С. Исполнители: с.н.с. Кривицкий С.В., м.н.с. Вольпян Г.В.

YTBEPKREH

Главным инженером Союзморниипроекта Ю.А.Ильницким Определение скоростного напора ветра над акваториями для расчета нагрузок на портовне соору-жения. Методические указания.

РД 31.33.04 - 84

Вводится впервые

Срок введения в действие установлен с от 07.84

Настоящие методические указания устанавличают методику и порядок расчета скоростного напора и карактеристик ветра над портовным акваториями.

I. OEIUE HOJOKEHUS

І.І. Характеристики ветра и скоростного напора сдужат для расчета ветрових нагрузок на портовне сооружения в соответствии с требованиями глави СНиП П-6-74 "Нагрузки и воздействия".

Характеристики ветра допускается использовать при расчете элементов ветровых воли и висоти штормового нагона.

- І.2. Расчет характеристик ветра в районе порта необходимо выполнять с учетом деления ветра по направлению на морские и береговые.
- I.3. Расчетные характеристики морских ветров определяют по синоптическим картам.
- 1.4. Расчетные характеристики береговых ветров для портовой акватории следует определять по данным береговых метеостанций.
 - положения по расчету скорости ветра
 и скоростного напора
 - 2. І. При расчете характеристик ветра в районе порта

морскими счистотся ветри в секторе, открытом со сторони моря, в котором отсутствуют острова и миси; ветри остальных направлений со стороны сущи (миса, острова) считаются береговыми.

- 2.2. Для расчета характеристик ветра над портовой акваторией используют синоптические карти или данные метеостанций.
- 2.3. В качестве исходных для расчета скорости ветра и скоростиото напора принимают значения скорости ветра на высоте 10 м. Продолжительность используемого многолетнего ряда наблюдений необходимо определять при волновых расчетах в соответствии с требованиями глави СНиП 2.06.04-82, а при расчетах ветровых натрузок по рекомендациям глави СНиП П-6-74.

Скорости ветра, измеренние по флюгеру, необходимо корректировать в соответствии с требованиями глави СНиП II-6-74.

2.4. Ветровие нагрузки на береговие здания и сооружения необходимо принимать в соответствии с требованиями глави СНиП П-6-74 по определяемим в настоящем РД значениям скоростного напора для портовых акваторий.

Примечание. В расчетах ветровых нагрузок на береговне здания и сооружения допускается, при надлежащем обосновании по натурным данным, принимать в качестве расчетных ветры морских направлений.

2.5. Расчетный скоростной напор $q_{\rm ZS}$, Па, при морских или береговых ветрах следует определять по формуле

$$q_{zs} = q_{os} k_{zs} , \qquad (I)$$

иле q_{os} — расчетный скоростной напор ветра на стан_дартной висоте IO м:

 k_{x5} - коэффициент, учитывающий изменение скоростного напора по висоте. 2.6. Расчетный скоростной напор q_{OS} , Па, необходимо определять по формуле

$$q_{os} = 0,613 \left(\alpha \, V_{to} \right)^2,$$
 (2)

- где с коэффициент , принимаемый в соответствии с требованиями глави СНиП П-6-74;
 - У₁₀ расчетная скорость ветра, м/с, на висоте 10 м, определяемая по рекомендациям настоящего руководства.
- 2.7. Коэфумилент k_{ZS} для любой нооти z , m, следует определять по формуле

$$k_{zs} = \left(\frac{v_z}{v_{to}}\right)^2, \tag{3}$$

где $\mathcal{V}_{\mathbf{Z}}$ — скорость ветра на висоте \mathbf{Z} .

- 3. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ ВЕТРА НАЛ ВОЛНОЙ ПОВЕРХНОСТЬЮ
- 3.І. Водная поверхность представляет собой тип подстилавщей поверхности, для которой, в отличие от суши, размери шероковатостей в виде поверхностных води зависят от скорости ветра.
- 3.2. К расчетным характеристикам ветра над водной поверхностью относятся:
- расчетная скорость ветра v_{to} на висоте 10 м над спокойным уровнем водной поверхности;
- профиль средней горизонтальной скорости ветра $v_{\vec{z}}$, отсчитываемий от спокойного уровня водной поверхности до висоти приводного слоя атмосферы:
- динамическая скорость $V_{\mathbf{x}}$ карактеристика масштаба турбулентных скоростей;

- параметр шероховатости z_o высота над спокойной волной поверхностью, на которой срешняя скорость ветра обращается в нуль;
- разгон ветра X расстояние от подветренного берега
 до расчетной точки, измернемое по направлению ветра;
- коэффициент сопротивления C_Z характеристика сопротивления шероховатой водной поверхности обтекающему воздушному потоку:
- тангенциальное трение \mathcal{T}_O напряжение, приложенное к поверхности воды, связанное с действием сил молекулярной и турбулентной вязкости.
- 3.3. Расчет характеристик ветра над водной поверхностью при береговом ветре необходимо производить с учетом деления водоема на зони шероховатости вдоль направления ветра:
- входная зоня участок воздушного потока над водной поверхностью, прилегающий к берегу, где характеристики ветра формируются в условиях гладкого обтекания;
- промежуточная зона участок воздушного потока, в котором характеристики ветра формируются под действием развивающихся ветровых волн и зависят как от глубини, так и от разгона;
- предельная зона участок воздушного потока, в котором характеристики ветра сформированы под действием ветровых воли и не зависят от разгона.
- 3.4. Расчет характеристик ветра над водной поверхностью при морском ветре необходимо производить для предельной зоны шероховатости, в которой характиристики ветра сформированы под действием ветровых волн на глубокой воде и не зависят от разгона.
 - 3.5. Параметр шероховатости водной поверхности выбирается

с учетом деления водоема на зоны в зависимости от характерной глубины акватории и разгона:

- входная зона отвечает участку гладкого обтекания:
- промежуточная вона отвечает участку развивающейся шеродоватости:
- предельная глубоководная зона отвечает участку полностью развитой пероховатости.

4. ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ХАРАКТЕРИСТИК ВЕТРОВОГО ПОТОКА

- 4.1. Расчетную скорость ветра U_{10} необходимо определять на стандартной висоте $\mathbf{z}=10$ м над уровнем моря. При этом допускается использовать как данние синоптических карт, так и фактически измеренные значения окорости ветра.
- 4.2. Тангенциальное трение на поверхности водоема \mathcal{V}_0 , Π_0 , необходимо определять по формуле

$$\tau_0 = \rho_a \, V_*^2, \tag{4}$$

где ρ_a - плотность воздуха, кг/м⁸;

V. - динамическая скорость.

4.3. Динамическую скорость \mathcal{U}_{\star} , м/с, над водной поверхностью следует определять по формуле

$$v_{\star} = c_{10} v_{10}^2 , \qquad (5)$$

где Сто - коэффициент сопротивления.

4.4. Коэффициент сопротивления для водной поверхности c_{10} на высоте 10 м следует рассчитывать по соотношению

$$C_{10} = \left(2,5 \ln \frac{40}{E_0}\right),$$
 (6)

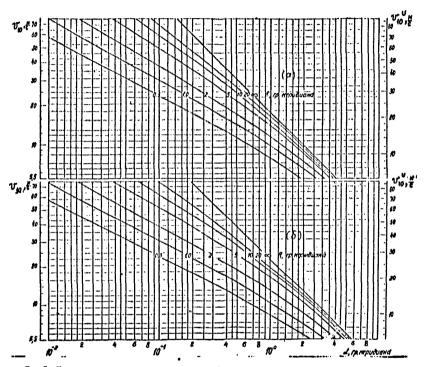
где 🗷 - параметр нероховатости.

4.5. Параметр шероховатости \varkappa_o , м, для водной поверхности следует рассчитывать по формуле

$$Z_{o} = 10 \exp\left(-\frac{0.4 \, V_{t0}}{V_{\star}}\right). \tag{7}$$

4.6. Профиль скорости ветра $\,\,\mathcal{V}_{_{\!Z}}\,\,$, м/с, необходимо определять по формуле

$$\frac{v_{z}}{v_{*}} = 2,5 \ln \frac{z}{z_{0}}.$$
 (8)


5. PACTET XAPAKTEPUCTUK MOPCKUX BETPOB B PAVOHE HOPTA

5.І. Расчетную скорость ветра \mathcal{V}_{10} необходимо определять по данным синоптических карт, используя величину градиента давления α , град. мерид., и радиуса α диклонической кривизны изобар, град. мерид., в соответствии с графиком рис. І для заданной географической широтн φ .

Для определения расчетной скорости при температуре воды, меньшей или равной температуре воздуха на висоте z=10 м, пользуются левой вертикальной шкалой V_{10} ; при температуре воды большей, чем температура воздуха, пользуются правой вертикальной шкалой v_{10}^{U} .

Направление ветра необходимо отклонять от касательной к изобаре в расчетной точке на величину угла $15^{\rm O}$ в сторону низкого павления.

5.2. Определение расчетной скорости морского ветра v_2^c , измеренной на береговой (портовой) метеостанции на дюбой висоте.

Ржс. I. Номограмма для определения расчетной скорости ветра при нейтральной V_{IO}^{\prime} и неустойчивой V_{IO}^{\prime} отратирикация по величине грдвента давления c и радиров уса кривизни изобар c для географической широти $\phi > 50^{\circ}(a)$ и $35-49^{\circ}(d)$.

по формуле

$$V_{10} = k_z V_z^c , \qquad (9)$$

где $k_{\rm g}$ - коэффициент "приведения" скорости ветра к стенцартной вусоте при морских ветрах.

При этом данные о характеристиках ветра на берегу должни быть достаточно обосновани статистически.

Коэффициент k_{\neq} для нейтральной стратификации следует принимать по табл. І.

Таблица І

Висота над уровнем моря	Значен 10	ия к при	скорости	ветра <i>v^c</i> _40	-M/c
	1,18	I,23	1,27	T,32	I,36
4	I,I0	1,12	I,I4	I,I6	1,18
6	I,05	I,06	I,07	I,08	1,09
8	I,02	I,03	1,03	1,03	I,04
IO	I,00	I,00	I,00	1,00	I,00
12	0,98	0,98	0,98	0,97	0,97
14	0,97	0,96	0,95	0,95	0,95
16	0,96	0,95	0,94	0,93	0,93
18	0,95	0,94	0,93	0,92	0,91
20	0,94	0,93	0,92	0,9I	0,90
30	0,90	0,89	0,87	0,86	0,85
40	0,88	0,86	0,84	0,83	0,80
50	D, 87	0,84	0,82	0,80	0,79
100	0,82	0,79	0,76	0,74	0,72

Примечание. Для промежуточных скоростей ветра и высот значение коэффициента $k_{\mathbf{z}}$ допускается определять линейной интерполяцией.

5.3. Динамическую скорость \mathcal{V}_* и параметр шероховатости \mathcal{V}_o при ветрах с моря следует определять по скорости \mathcal{V}_{40} , используя рис.2. Расчет скорости \mathcal{V}_{φ} над водной поверхностью

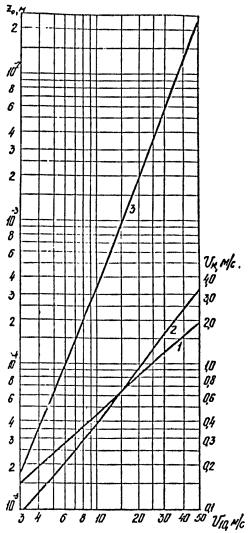


Рис.2. График для определения динамической скорости \mathcal{V}_{\star} (диния I) при береговых ветрих, а также динамической скорости \mathcal{V}_{\star} и параметра шероховатости \mathcal{Z}_{0} (динии 2 и 3) при морских ветрах по расчетной скорости ветра \mathcal{V}_{0} .

на висоте z следует выполнять по формуле (9) при условии $v_z^- = v_z^c$. Примечание. Построение эпиры скорости морского ветра до-

пускается выполнять по данным таблицы, помещенной в Приложении 2.

6. PACYET XAPAKTEPUCTUK EEPETOBЫX BETPOB B PAЙOHE ПОРТА

6.І. При расчетах характеристик берегових ветров необходимо учитивать характер местности, на которой расположена метеостанция. Местность по характеру подстилающей поверхности подразделяти на четнре типа: А_Т, А₂, Б, В.

К типам ${\tt A}_{\tt I}$ и ${\tt A}_{\tt 2}$ относят открытую местность: пустыни, степи и побережья морей и океанов.

К типу ${\tt A}_{ extbf{I}}$ относят песчаную поверхность и дуга, покрытые травой высотой до ${\tt IO-50}$ см.

К типу А, относят местность, покрытую кустарником.

К типу Б относят лесистую, сельскую местность, районы городов с малоэтажной застройкой и окраины городов со зданиями висотой до 20 м.

К типу В относят районы крупных городов со зданиями повышенной этажности (более 20 м высотой).

Средние значения параметра шероховатости z_o' и коэффициента сопротивления C_{iO}' на висоте z=10 м для данных типов местности следует принимать по табл. 2.

Тафица 2

Тип местности	Параметр шероховатости <u>Zó</u> м	: Коэффициент сопротив-
\mathbf{A}_{T}	0,0034	0,0025
A2 B	0,035	0 ,∩0 5
Б	0,38	0 , 0 1 5
В	T,N	0,03

Примечание. Типы местности A_2 , Б, В соответствуют типам местности A, Б, и В главы СНиП П-6-74 и дополнений к ней.

6.2. Построение впюри скорости ветра в приземном слое следует выполнять с учетом типа местности и скорости ветра $V_{10}^{\ c}$, измеренной на метеостаниии. Расчет скорости ветра $V_{\mathbb{Z}}^{\ c}$ на высоте \mathbb{Z} следует выполнять по формуле (9) при известных значениях скорости ветра $V_{10}^{\ c}$ и коэффициента $\mathbb{K}_{\mathbb{Z}}^{\ c}$, учитывающего изменение скорости берегового ветра по высоте.

Коэффициент k_Z для берегового ветра принимают по данным табл. 3 с учетом типа местности.

Таблица	3
---------	---

Внеота и м		Тип местнос	TH	
:	A _I	-:- A ₂	Б	- : - B
2	I,25	I,29	1,42	I,70
4	I,I3	I , I6	I,22	I,35
6	I,07	I,08	1,12	I , I8
8	I,03	I,04	I,05	I,08
IO	I,00	I,00	I,00	I,00
12	0,98	0,97	0,96	0,94
14	0,96	0,95	0,93	0,89
16	0;94	0,93	0,90	0,86
18	0,93	0,91	0,88	0,83
20	0,92	0,90	0,86	0,80
30	0,88	0,84	n ,7 8	0,70
40	0,85	0,80	0,74	0,63
50	0,83	0,77	0,70	0,59
100	0,78	0,69	0,60	0,47

6.3. Динамическую скорость ветрового потока $V_{\pi}^{'}$ для типов местности $A_{\rm I}$, $A_{\rm 2}$, Б и В следует определять в зависимости от скорости $V_{40}^{\,\,\rm c}$ по формуле

$$v_{*}' = \sqrt{c_{10}'} v_{10}^{c}. \tag{10}$$

Коэффициент сопротивления $C_{i0}^{\,\prime}$ необходимо принимать по панным табл. 2.

6.4. При расчетах характеристик ветра над сущей в районе порта, отличающегося по типу местности от исходного в районе расположения метеостанции, допускается данные наблюдений метеостанции корректировать с учетом типа местности. Тип местности в том случае, если ее протяженность по направлению ветра составляет не менее I км. Расчет динамической скорости $\mathcal{V}_{\mathbf{x}_2}^{-}$ при переходе воздушного потока с одного типа местности на другой следует производить по формуле

$$v_{*2}' = k_n v_{*1}', \qquad (II)$$

где v_*^- динамическая скорость для исходного типа местности, м/с; k_n — коэффициент, учитывающий изменение скорости при чередовании различных типов местности.

Коэфбициент перехода k_{Π} принимается по табл.4.

Таблища 4

Тип переход	a: k _n :	Тип перехода	: k _n :	Тип	пере	хопа	: ·kn
$A_1 \rightarrow A_2$	1,29	Б — A ₂	0,70	A_2	-	P	I,73
A ₂ → B	I,43	$A_2 \rightarrow A_1$	0,77	В	>	A ₂	0,58
Б — В	1,21	$A_{I} \rightarrow B$	I,85	В	-	AI	0,45
B - F	0,83	$A_{I} \rightarrow B$	2,23	Б	-	$\mathtt{A}_\mathtt{I}$	0.54
В К	0,83	$A_{I} \rightarrow B$	2,23	Б		$\mathtt{A}_\mathtt{I}$	0.54

Скорость ветра U_{i0}^{P} для типов местности, отличающихся от исходного типа, следует определять по формуле (10) по найденному кначению U_{*2}^{P} и соответствующему данному типу местности U_{i0}^{P} . При этом эпору скорости ветра определяют в соответствии с требованиями п.6.2.

6.5. Морские акватории малой протяженности (T-5 км), в т.ч. акватории портов относят к типу подстилакщей поверхности М.

6.6. Расчеты характеристик берегового ветра над водной поверхностью (тип М) следует выполнять с учетом типа местности, непосредственно прилегающей к акватории.

Расчетную скорость ветра V_{10} над поверхностью акватории порта следует определять по изметяемой на берегу скорости ветра v_{10}^{c} (или определяемой расчетным путем v_{10}^{c}) по формуле

$$V_{io} = k_c V_{io}^{c,\rho}$$
 (I2)

где k_c - коэффициент, учитывающий изменение скорости ветра при нереходе с берега на водную поверхность.

Коэффициент k_c зависит от типа прилегающей к акватории местности и принимается равным:

I,03 - для типа местности A_T ;

$$I,08 - -" - A_2;$$

линамическую скорость v_* для типа местности М необходимо определять по рис.2 (диния I).

Эпюру скорости ветра v_z нед акваторией порта опрепедяют в соответствии с требованиями п.6.2. При этом коэффициент k_z , для местности типа М принимают из табл.5.

Таблица 5

7. ОПРЕДЕЛЕНИЕ СКОРОСТНОГО НАПОРА И ХАРАКТЕРИСТИК ВОЗДУШНОГО ПОТОКА НАД ПОРТОВЫМИ АКВАТОРИЯМИ

- 7.1. При расчете скоростного напора и характеристик воздушного потока над портовыми акваториями необходимо учитывать направление ветра: береговые или морские ветры. Расчетная скорость ветра \mathcal{V}_{iO} указанных направлений определяется в соответствии с рекомендациями разделов 5 и 6, а расчетный скоростной напор q_{iOS} на висоте z=10 м в соответствии с рекомендациями п.2.6.
- 7.2. При расчете скоростного напора коэффициент k_{ZS} ; учитивающий изменение скоростного напора по висоте, как для берегових, так и для морских ветров, следует определять по формуле

$$k_{zs} = \left(1 + 2.5 \sqrt{c_{10}} \ln \frac{z}{10}\right)^2,$$
 (13)

где C_{iO} -коэффициент сопротивления для водной поверхности на стандартной высоте z=10 м.

7.3. При ветрах с моря параметр шероховатости z_o и коеффициент сопротивления C_{10} для акватории порта необходимо определять по формулам

$$z_0 = 2.1 \cdot 10^{-2} \frac{v_*^2}{g}$$
; (14)

$$C_{10} = \left(2.5 \ln \frac{97}{v_{\star}^2} + 9.6\right)_{\text{Z} = 10 \text{m}}^{-2} \tag{15}$$

Примечание. Коэффициент сопротивления C_{10} , динамическую скорость V_{χ} , тангенциальное напряжение τ_0 и расчетный скоростной напор q_{00} на висоте IO м на акватории порта при морских ветрах допускается определять по номограмме (см.Приложение 3) по известной расчетной скорости V_{40} , где против заданного значения V_{40} определяется значение искомой характеристики.

7.4. Коэффициент k_{ZS} при морских ветрех следует определять по табл.6.

Скорость		Висот	a_,	нац у	ровнем	моря,	M To		<u>-</u> 1110	
Berpa Vio, M/c	: au	. 30	4U	1 50	1 60	70	, 80	90	. 100	_
10	1,14	1,23	1,29	1,34	1,38	1,41	1,44	1,47	1,50	
20	1,17	I,27	I,35	I,4I	I,46	I,5I	I,54	I,58	I,62	
30	1,20	1,32	I,4I	I,48	I,54	I,60	I,64	T,68	I,72	
40	I,22	I,36	I,46	I,54	I, 6I	I,67	I,72	I,77	I,8I	
50	I,24	I,40	1,51	I,60	I,68	I,75	I,8I	I,86	1,91	

Примечание. Для промежуточных висот и скоростей ветра значения коэффициента $k_{\rm ZS}$ допускается определять линейной интерполяцией.

- 7.5. При расчетах характеристик ветря на портовых акваториях протяженностю I-5 км (при береговых ветрах) необходимо учитывать характерную глубину акватории Н и разгон X от берега до расчетной точки.
- 7.6. При отношении X/H < 250 параметр шероховатости z_o и коэффициент сопротивления C_{40} для акватории портов при берегових ветрах следует определять по формулам

$$z_o = 43 \frac{N_a}{V_{\star}} ; \qquad (16)$$

$$C_{10} = \left(2,5 \ln \frac{v_{\pi Z}}{v_0} - 9,4\right)_{Z=10 \text{ m}}^{-2}$$
 (17)

7.7 Коэйфициент k_{ZS} для портовых акваторий при береговых ветрах необходимо принимать по табл.7.

Таблица 7

Вначения коэфициента k_{zs} для акватории порта при береговых ветрах

Сколость ветра	===		Висота	IZ.	нал уп	овнем	\mathbf{R}	M		-
_ 7.6" W/c"	_20	30	<u>4</u> 0	50	60	70	80	90	IOO	_
III	2	3	4	5	6	7	8	9	10	_
IO	I,I6	I,26	I,34	I,40	I,44	I,49	I,52	I,56	I,59	
20	I,I5	I,24	1,31	1,37	I,4I	I,45	I,49	I,52	I,54	

I	2 -	3 -	_ 4	5	6	7	8	9	IO
30	I,I4	I,23	I,30	I,35	I,40	I,43	I,46	I,50	I,52
40	I,I4	I,23	I,29	1,34	I,39	I,42	I,45	I,48	I,5I
50	I,I4	I,22	1,29	I,34	I,38	I,4I	I,44	I,47	I,50

7.8. При отношении X/H \gg 250 параметр шероховатости \mathbf{z}_o и коэффициент сопротивления С $_{60}$ при береговых ветрах необходимо рассчитывать с учетом глубины акватории и разгона по соотношениям:

$$Z_{0} = 8,5 \cdot 10^{-5} \frac{v_{+}^{2}}{g} \left(\frac{X}{H}\right);$$

$$C_{10} = \left(2,5 \ln \frac{gz}{v_{+}^{2}} + 2,5 \ln \frac{H}{X} + 23,4\right)_{z=10M}$$
(I9)

7.9. Значения коэффициента k_{25} для портовых акваторий при береговых ветрах следует принимать по табл.8.

Таблица 8

Значения коэффициента k_{zs} для акватории порта с учетом глубины места и разгона

CKODOCT	ь:Раз	-:	Ru	сота	и на	д уров	нем мо	M. RO		
ветра Ую, м/с_	TOH X.R	20	30	40	50	60	70	80	90	100
T-	2	= 3	4-	- 5 -	- 6 -	_ ~~	8-	9-	_ IO_	_II _
			Parotau	a H =					~ ~ ~	
	2	1,17	I,27	~I,34		I,45	I,50	I,53	I,57	I,60
15	3	1,18	I,29	I,37	I,43	I,49	I,53	I,57	I,6I	I,64
	5	I,19	I,3I	I,40	I,48	I,54	I,59	I,63	I,67	1,71
	2	1,19	I,30	I,39	I,45	1,51	I,57	I,60	I,64	I,67
20	3	I,I9	I,32	I,4I	I,48	I,54	I,59	1,64	I,68	1,72
	5	I,22	I,36	I,46	I,54	I,6I	I,67	I,72	I,77	1,81
	2	1,21	I,35	I,45	1,53	I,59	I,65	I,70	I,74	I,78
30	3	I,24	I,38	I,50	I,58	I,66	I,72	I,78	I,83	I,87
	5_	I,26	I,43	I,56	I,66	1,75	I,82	I,89	I,95	2,00

Продолжение табл. 8

	2	3_	4_	5_	6	- 7 -	8	9	IO _	II _
	2	1,25	I,40	I,52	I,6I	I,69	I,76	I,82	I,87	I,92
40	3	I,28	I,45	I,58	I,69	I,78	I,86	I.93	I,99	2,04
	5	I,33	I,54	I,7I	I,84	I,95	2,04	2,13	2,2I	2,28
50	2	I,28	I,46	I,59	I,70	I,79	I,87	I,94	2,00	2,05
	3	I,32	I,53	I,69	I,82	I,92	2,02	2,10	2,18	2,24
(11)	- darge from		_T	лубина	H = I	О м				-
I5	3	T,16	I,25	I,33	I,38	I,43	T,47	I,5I	I,54	I,57
	5	I,17	I,28	1,36	I,42	I,47	I,52	I,56	I,59	T,62
20	3	T,17	I,28	I,36	I,42	I,48	I,52	τ,56	I,60	I,63
	5	I,T9	T,3I	I,39	I,46	I,52	I,57	I,62	I,66	I,69
30	3	I,20	I,33	I,42	1,50	T,56	I,6I	I,66	I,70	T,74
	5	I,22	I,37	I,47	I,55	I,63	I,69	I,74	I,79	I,83
40	3	1,23	I,37	1,48	I,56	I,64	I,70	I,75	I,80	I,84
	5	I,26	I,43	I,55	I,65	I,73	I,8I	I,87	I,93	I,98
50	3	I,25	I,42	I,54	I,64	I,72	I,79	I,85	1,91	I,96
	5_	T,30	T,49	I,64	I,76	I,85	I,94	2,02	2,08	2,15
			I	лубина	H = I	5 м		Alberta arwaya	-	
I 5	5	I,I6	I,26	I,33	I,39	I,44	I,48	1,52	I,55	T,58
20	5	1,18	I,29	I,37	I,43	T,48	I,53	I,57	I,AI	I,64
30	5	I,20	I,33	I,43	I,50	T,57	I,62	I,67	I,7I	I,75
40	5	I,24	I,39	I,50	I,59	I,66	I,73	I,78	I,84	I,88
50	5	I,26	I,43	I,55	I,66	I,74	I,8I	I,88	I,94	I,99
				'лубина	H =	20 м	· 			
I 5	5	1,15	I,25	I,32	I,37	•	I,46	I,50	I,53	I,55
20	5	I,17	I,27	I,35	I,4I	I,46	I,5I	I,55	I,58	I,6I
30	5	I,I9	1,31	I,40	I,48	I,54	I,59	I,63	I,67	I,7I
40	5	I,22	I,35	I,46	I,54	I,6I	I,67	I,72	I,76	I,80
50	5	I,24	I,40	I,5I	I,60	I,68	I,75	1,81	I,86	1,91

Примечание. Для промежуточных вноот, скоростей ветра, разгонов и глубин значения k_{ZS} допускается определять линейной интерполяцией.

Приложение І

Обозначения

- v_{40} расчетная скорость ветра на висоте z = 10 м над водной поверхностью, м/с;
- v_{0}^{c} скорость берегового ветра, измеренная метеостанцией на висоте z = 10 м, м/с;
- v_{i0}^{ρ} скорость берегового ветра, определяемая расчетным путем,м/с;
- v_z^{-c} профиль горизонтальной скорости ветра для суши на высоте z м/с:
- V динамическая скорость над водной поверхностью, м/с;
- v/- динамическая скорость над сущей, м/с;
- **z**₀ параметр шероховатости водной поверхности, м;
- z,- параметр шероховатости суши. м:
- Х разгон ветра. м:
- Н характерная глубина акватории. м:
- C_{g} коэффициент сопротивления на висоте z над водной поверхностью:
- C_{10} коэффициент сопротивления на высоте z=10 м над водной поверхностью;
- C'_{to} коэффициент сопротивления на высоте z = 10 м над сушей;
- τ_o тангенциальное трение , Па;
- q_{cs} расчетный скоростной напор ветра на висоте z=10 м,Па;
- q_{25} расчетный скоростной напор ветра на висоте z , Па;
- k_{zs}- коэффициент, учитывающий изменение скоростного напора по висоте:
- \mathcal{S}_a плотность воздуха, кг/м³;
- q ускорение свободного падения, м/с²;
- $v_a = 1.5 \times 10^{-5}$ кинематическая (молекулярная) вязкость воздуха, w^2/c :

- к_д коэффициент, учитывающий изменение скорости морского ветра по высоте;
- $k_{\vec{z}}^{\prime}$ коэффициент, учитнвающий изменение скорости берегового ветра для различных типов местности;
- к_с коэффициент, учитывающий изменение скорости при переходе с твердой на водную поверхность;
- k_п коэффициент, учитывающий изменение скорости при чередовании различных типов местности.

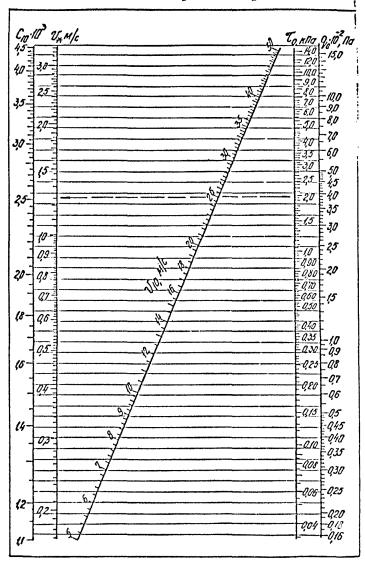
Приложение 2 (справочное)

Изменение скорости морского ветра $\ensuremath{\mathcal{U}}_{Z}$, м/с, с высотой.

ВБІСО-	V10;:		6			:	:	:
Ta	₩°C:- #		- <u>-</u>		<u>-</u> 8	÷-9	: _IO _	<u>: _12</u>
I;M	M/c 0,128	_0 <u>,</u> 167	: 0,208	0,25	<u>: 0,295</u>	<u>C,34</u>	<u>:</u> 0,388	0,487
ō,ī	2,54	3,09	3,62	4,12	4,62	5,08	5,54	6,40
0,2	2,76	3,38	3,98	4,55	5,13	5,67	6,21	7.24
0,5	3,05	3,76	4,45	5,12	5,80	6,45	7,10	8,36
I,0	4,0I	4,05	4,8I	5,56	6,31	7,03	7,78	9,20
2	3,49	4,34	5,17	5,99	6,82	7,62	8,44	IO,C4
3	3,62	4,5I	5,38	6,24	7,12	7,97	8,34	IO,54
4	3,72	4,63	5,53	6,42	7,33	8,2I	9,II	IO,69
5	3,79	4,72	5,65	6,56	7,50	8,4I	9,33	II,I6
6	3,85	4,79	5,74	6,67	7,63	8,56	9,51	II,38
7	3,89	4,86	5,82	6,77	7,75	8,69	9,66	II,57
8	3,94	4,91	5,89	6,85	7,84	8,80	9,79	II,73
9	3,97	4,96	5,95	6,93	7,93	8,90	9,90	II,87
IO	4,00	5,00	6,00	7,00	8,00	9,00	10,00	I2,CG
13	4,07	5,08	6,10	7,II	8,14	9,14	10,18	I2,22
14	4,12	5,15	6,18	7,20	8,26	9,27	IO,33	I2,4I
I6	4,16	5,20	6,25	7,29	8,35	9,39	10,46	12,57
18 20	4,20	5,25	6,3I	7,36	8,44	9,49	10,57	12,72
25	4,23	5,30	6,37	7,43	8,52	9,58	IO,67	12,84
30	4,30	5,39	6,48	7,57	8,68	9,77	10,89	I3,I6
3 5	4,36 4,4I	5,47	6,58	7,68	8,82	9,92	II,07	I3,34
40	4,45	5,53 5,59	6,66 6,73	7,78	8,93	IO,C5	II,22	I3,53
45	4,49	5,64	6,79	7,86	9,03	IO,I7	II,35	I3,69
50	4,52	5,68	6,85	7,93 8,00	9,I2 9,I9	IO,27	II,46	13,83
60	4,58	5,76	6,94	8,II	9,33	IO,36 IO,5I	II,56	I3,96
70	4,63	5,82	7,02	8,2I	9,44	IO,64	II,74	I4,I8
80	4,67	5,86	7,02	8,29	9,54	10,75	II,89 I2,02	I4,73
90	4,71	5,92	7,15	8,36	9,63	10,75	12,02	I4,53
100	4,74	5,97	7,2I	8,43	9,70	10,23	12,13 12,23	I4,67 I4,80

Приложение 2 (продолжение)

BLICO- T	510; TA	: :			· ••• ••• ••• •	-	***		dest state time
ואו ביו	<u>/c. 14</u>	<u>: I6</u> :	_I8_:	<u> 20 :</u>	_22 _:	_ 24_ :	26	<u> 28</u> :	30
Z, M N	坛: <u>化:</u> 0,5 <u>9</u>	0,70	0,815_	<u>0,935</u>	T CG	_I,I9 :	т 32	T 46	T CT
0,I	7,I9	7,93	8,62	9,24	9,82			<u>I,46</u>	
0,2	8,2I	9,14	I0,03	10,86	II,65	IO,33 I2,39	I0,78	II, I9	II,55
0,5	9,56	10,75	II,89	I3,00	I4,08	I3,60	13,C6	I3,7I	I4,34
I,0	10,58	II,96	I3,30	I4,62	15,91	17,18	16,C8 18,37	I7,C5	I8,02
2	II,60	13,17	I4,7I	16,24	17,75	I9,23		19,58	20,80
3	12,20	13,88	I5,54	17,19	I8,82	20,44	20,65	22,II	23,59
4	12,62	14,38	16,12	17,86	19,58	2I,29	2I,99 22,94	23,59	25,22
5	12,95	14,77	16,58	18,36	20,17	21,96	23,67	24,64 25,45	26,38
6	13,22	I5,C9	I6,95	18,70	20,65	22,50	24,27	26,II	27,28 28,0I
7	I3,45	15,36	17,26	19,16	21,06	22,96	24,78	26,68	28,63
8	I3,65	I5,59	I7,54	I9,48	21,42	23,35	25,22	27,16	29,18
9	13,82	I5,80	I7,78	19,75	21,73	23,70	25,61	27,59	29,64
10	14,00	16,00	18,00	20,00	22,00	24,00	26,00	28.00	30,00
13	14,24	I6,30	I8,36	20,42	22,49	24,56	26,56	28,64	30,80
I 4	I4,47	I6,57	I8,67	20,78	22,90	25,02	27,07	29,20	3I,42
I6	I4,67	I6,80	I8,95	21,69	23,25	25,41	27,51	29,69	31,95
18	I4,84	I7,0I	19,19	21,37	23,56	25,76	27,90	30,12	32,43
20	15,CO	17,19	I9,40	21,62	23,84	26,08	28,24	30,52	32,85
25	I5,32	17,58	I9,85	22,14	24,43	26,74	28,98	31,32	33,75
30	I6,00	17,90	20,23	22,56	24,91	27,28	29,58	31,98	34,48
3 5	15,82	18,17	20,54	22,92	25,32	27,74	30,09	32;54	35,10
40	16,02	18,41	20,81	23,23	25,68	28,14	30,53	33,03	35,64
45	16,19	18,6I	21,05	23,51	25,99	28,49	30,92	33,46	36,II
50	I6,37	I8,80	21,27	23,76	26,27	28,80	31,26	33,84	3 6,54
60	16,61	I9,II	21,64	24,18	26,75	29,34	31,25	34,51	37,27
70	I6,84	19,38	21,95	24,54	27,18	29,80	32,37	35,C7	37,88
80	17,04	19,62	22,22	24,85	27,51	30,20	32,8I	35,56	38,42
90	17,21	19,82	22,46	25,13	27,82	30,55	33,20	35,98	38,90
100	17,37	20,0I	22,68	25,37	28,10	30,86	33,55	36,37	39,32


Приложение 2 (продолжение)

Buico- V	, 		-			-	-	_ ~ ~ ~	-
	<u> </u>	_=_34	<u>36</u>	38	<u>40</u>	<u>: 42</u> _	44_	46	48
_ 0,	*,: 	Ξ	I	•	•	•	•	•	•
ننا سر بيد	<u>€: I,7</u> 5								:_3 <u>,</u> I2
0,1	II,82	12,07	-	I2,37	12,43	12,43	12,37	12,26	I2,C7
0,2	I4,85	I5,38	15,83	16,23	16,58	I6,88	17,13	17,33	17,47
0,5	18,86	19,75	20,57	21,33	22,08	22,76	23,43	24,03	24,61
I,0	21,89	23,05	24,15	25,19	26,23	27,2I	28,19	29,IO	30,CI
2	24,92	26,36	27,74	29,05	30,38	31,66	32,95	34,18	35,41
3	26,68	28,29	29,83	31,31	32,8I	34,26	35,73	37,14	38,57
4	27,95	29,67	31,32	32,9I	34,54	36,II	37,7I	39,25	40,81
5	28,92	30,73	32,47	34, I5	35,88	37,54	39,24	40,88	42,55
6	29,72	31,60	33,42	35,I7	36,97	38,7I	40,49	42,2I	43,97
7	30, 39	32,33	34,2I	36,03	37,88	39,70	4I,55	43,34	45,17
8	30,97	3 2,97	34,90	36,77	38,69	40,56	42,47	44,32	46,2I
9	31,49	33, 53	35 , 5I	37,43	39,40	41,31	43,28	45,I8	47,I3
IO	32,00	34, CO	36,00	38,00	40,CO	42,00	44,CO	46,00	48,CC
12	32,75	34,9 I	37,00	39,03	41,12	43,I6	45,25	47,28	49,37
I4	33,42	35,64	37,78	39,89	42,05	44,I5	46,3I	48,4I	50,57
16	34,00	36,28	38,49	40,63	42,85	45,00	47,23	49,39	51,61
18	34,50	36,84	39,09	41,29	43,55	45,76	48,C4	50,25	52,53
20	34, 98	37, 34	39,64	41,87	44,I8	46,43	48,76	51,02	53,35
25	35,95	38,4I	40,79	43,I2	45,52	47,87	50,29	52,66	55,C9
30	36,75	3 9,28	41,73	44,I3	46,62	49,04	51,54	53,99	56,5I
3 5	36,42	40,CI	42,53	44,99	47,54	50,03	52,60	55,18	57,7I
40	38,00	40,65	43,22	45,73	48,34	50,88	53,52	56,09	58,75
45	38,52	4I,2I	43,83	46,39	49,04	51,64	54,33	56,96	59,67
5 0	38,98	41,71	44,37	45,98	49,68	52,32	55,05	57,73	6C,≟9
60	39, 78	42,58	45,32	48,00	50,77	53,49	56,30	59,C6	6I,9I
70	40,45	43,32	46,II	48,65	51,69	54,48	57,36	60,19	63,II
80	4I,04	43,85	46,80	49,59	52,49	55,33	58,28	6I,I7	64,I5
90	41.55	44,52	47,4I	50,25	53,20	56,09	59,C9	62,C3	65,07
COI	42,0I	45,02	47,96	50,84	53,83	56,77	59,8I	62,80	65,69

Приложение 2 (продожжение)

			-	,			-
M	10; (c: 50	<u>.</u> <u>5</u> 5	60	_ 65	70	75	: 80
X M	*/:	•	•	:	:	della direca dility unua	
X>H W		: _3,84	<u>: 4,39</u>	<u>: _4,99</u> _	<u>5,64</u> :	<u>6,34</u>	7,11
0,1	II,82	IO,88	9,50	7,60	5,15	2,08	
0,2	17,56	17,52	17,10	I6,24	I4,9I	I3,05	IO,57
0,5	25,16	26,3I	27 , I4	27,66	<i>2</i> 7,8I	27,56	26,84
1,0	30,91	32,95	34,74	36,30	37,58	38,53	39,14
2	36,65	3960	42,34	44,93	47,34	49,5I	5I,45
3	40,0I	43,49	46,78	49,99	53,05	55,93	58,65
4	42,40	46,25	49,94	53,57	57,IO	60,48	63,76
5	42,25	48,38	52,38	56,35	60,24	64,02	67,72
6	45,76	50,14	54,38	58,62	62,8I	66,90	70,96
7	47,04	51,62	56,07	60;54	64,98	69,34	73,69
8	48,14	52,90	57,54	62,2I	66,86	7I,46	76,C6
9	49,12	54,02	58,83	63,68	68,52	73,32	78,16
IO	50,00	55,00	60,00	64,98	70,00	74,99	80,03
12	51,51	56,78	6I,99	67,26	72,57	77,88	83,26
14	52,78	58,26	63,67	69,18	74,74	80,32	86,CO
16	53,89	59,54	65 , I4	70,85	76,62	82,43	88,37
18	54,87	60,67	66,43	72,3I	78,28	84,30	90,46
20	55,74	6I , 62	67,58	73,63	79,77	85,96	92,33
25	57,59	63,82	70,03	76,4I	82,9I	89;50	96,30
30	59 , IO	65,57	72,03	78,66	85,48	92,39	99,53
3 5	60,38	67,05	73,72	80,60	87,65	94,82	IO2,27
40	61,52	68,33	75,18	82,26	89,53	96,94	IC4,64
45	62,47	69, <u>4</u> 6	76,47	83,73	91,19	98,80	I06,73
58	63,34	70,47	77,63	85,C4	92,67	ICO,47	IC8,60
6 0	64,85	72,22	79,63	87,32	95,24	IC3,36	III,& <u>l</u>
70	66,13	73,69	8I,32	89,24	97,4I	IO5,80	II4,58
80	67,24	74,98	82,78	90,90	99,29	I07,9I	II6,95
90	68 , 2I	76,I0	84,07	92,37	100,95	I09,78	II9,C4
100	69,09	77,12	85,23	93,68	I02,44	III,44	I20,9I

Приложение 3 (рекомендуемое)

Номограмма для определения характеристик ветрового потока по ваданной расчетной скорости морокого ветра

Примеры расчета

І. Определения характеристик морского ветра

Требуется найти следующие характеристики морского ветра: расчетную скорость ветра U_{40} , динамическую скорость V_{*} и параметр шероховатости \mathbb{Z}_{0} для широтн $\varphi=40^{0}$ при циклонической кривизне изобар R=10 град, мерид.; температура води равна температуре воздуха (нейтральная стратификация). Расстояние между изобарами в окрестности расчетной точки $\mathcal{L}=1.5$ град, мерид.

Решение:

Использун график на рис. I для широти $\psi = 40^\circ$ (кривне 6) по расстоянию между изобарами $\mathcal{L}=1.5$ град.мерид. и кривизне изобар $\mathcal{R}=10$ град.мерид., находим по левой шкале (для нейтральной стратификации) значение расчетной скорости ветра $v_{40}=14$ м/с. Далее по графику на рис.2 определяем значение динамической скорости (диния 2) $v_{40}=0.6$ м/с и параметра шероховатости (диния 3) $z_{40}=8.0$ х 10^{-4} м для скорости $v_{40}=14$ м/с.

2. Определение характеристик берегового ветра

Требуется определить характеристики берегового ветра на маяке оградительного мола внсотой 50 м, когда скорость ветра $V_{100}^{,c} = 40$ м/с была измерена на внсоте 100 м в черте города, застроенного многоэтажными зданиями. Вдоль направления ветра находится парк и далее акватория порта. Определить скорость ветра на маяке высотой 50 м.

Решение:

Определяем скорость ветра для местности В на высоте ІО м,

менользуя формулу (10) и принимая значение коэффициента $k_Z' = 0.47$ из табл. 3: $\mathcal{V}_{40}^{\mathsf{C}}(\mathsf{B}) = 0.47 \cdot 40 = 18.8$ м/с. Динамическую скорость для типа местности В определяем по формуле (10), принимая значение коэффициента \mathcal{C}_{10}' из табл. 2: $\mathcal{V}_{\mathbf{x}}^{\mathsf{C}}(\mathsf{B}) = \sqrt{0.03}^{\mathsf{C}} \cdot 18.8 = 3.26$ м/с. При переходе от местности типа В к местности типа Б (парк) используем для определения динамической скорости $\mathcal{V}_{\mathbf{x}}^{\mathsf{C}}(\mathsf{E})$ формулу (11), в которой значение коэффициента k_{G} вноираем из таблици 4 (тип перехода В \rightarrow Б): $\mathcal{V}_{\mathbf{x}}^{\mathsf{C}}(\mathsf{E}) = 0.83 \cdot 3.26 = 2.7$ м/с.

Расчет скорости ветра над портовой акваторией выполняется по известному значению скорости ветра \mathcal{V}_{10}^{ρ} для типа местности, прилегающей к акватории (в данном случае тип местности Б). Для типа Б скорость ветра на внесте 10 м вичисляется по формуле (IO); при этом коэффициент C_{10}' принимается из табл. 2 для типа Б: $\mathcal{V}_{10}^{\rho}(B) = 2.7: \sqrt{0.015} = 22$ м/с. Далее согласно формуле (I2) определяется скорость ветра \mathcal{V}_{10}' над поверхностью акватории; коэффициент k_{c} при этом вибирается для типа Б: $\mathcal{V}_{10}' = 1.4 \cdot 22 = 31$ м/с. По рекомендациям п. 6.6 и табл. 5 находим, что скорость ветра на маяке на внесте 50 м $\mathcal{V}_{50}' = 31:0.86 = 36$ м/с.

 Определение скоростного напора на акватории порта при морском ветре.

Требуется определить характеристики ветра v_* . c_{10} и скоростной напор q_{25} на маяке оградительного мола на ексоте 40 м. Расчетная скорость морского ветра $v_0 = 40$ м/с.

Редение:

По номограмме (Приложение 3) находим по расчетной скорости

Приложение 4 (продолжение)

 $U_{10} = 40$ м/с значения динамической скорости $U_{*} = 2,4$ м/с и коэффициента сопротивления $C_{10} = 3.6 \times 10^{-3}$.

По рекомендациям п.7.4 (табл.6) жаходим при V_{i0} = 40 м/с ж = 40 м коэффициент k_{25} = 1,46. Расчетный скоростной напор q_{i05} согласно рекомендациям п.2.6: q_{i05} = 980 Па. Из формулн (I) (п.2.5) определяем скоростной напор на высоте 40 м: q_{i25} = 980 х 1,46 = 1432 Па.

 Определение скоростного напора на акватории порта при береговых ветрах

Требуется определить скоростной напор на висоте 50 м на маяке оградительного мола. Расчетная скорость берегового ветра на маяке 30 м/с. Глубина акватории порта H = 10 м. Расстояние от берега X до маяка при береговых ветрах: 2 м 5 км.

Решение:

a) pasron X = 2 km.

Расчетный скоростной напор при $v_{40}=30$ м/с (см.п.2.6) $q_{00}=552$ Па. Для расчета коэффициента k_{25} оценивается отношение I/H=200. Согласно рекомендациям в этом случае (см.п.7.7) на висоте 50 м $k_{25}=I$, 35. Скоростной напор при этом $q_{25}=552$ х I, 35=745 Па.

6) Pasron X = 5 km.

Расчетный скоростной напор $q_{\text{ros}} = 552$ Па.

Отношение X/H = 500, следовательно, используем для определения коэффициента $k_{\rm ZS}$ рекомендации п.7.9; при $_{\rm Z}$ = 50 м, X = 5 км и $V_{\rm CO}$ = 30 м/c значение $k_{\rm ZS}$ = 1.66.

Сноростной напор $q_{2s} = 552 \times 1.66 = 916$ Па.

5. Расчет ветровой нагрузки на береговые здания

Требуется определить статическую нагрузку (лобовую) на эммент здания на висоте 40 м. Здание квадратное в плане со стороной a=10 м имеет висоту 50 м, находится на окраине города (тип местности Б). Максимальная скорость ветра в районе порта наблюдается при ветрах морских направлений. Расчетная скорость морского ветра над акваторией порта (I раз в 5 лет) определена по синоптическим картам и равна 25 м/с. Коэффициент перегрузки $n_n=1,2$, коэффициент лобового сопротивления $C_{\kappa}=1,4$.

Решение:

Определяем по известному значение $v_{io} = 25$ м/с скорость ветра v_{io}^c для типа местности Б по формуле (I2): $v_{io}^c = 25$: I,4 = I8 м/с.

Согласно рекомендациям глави СНиII II—6-74, статическая нормативная ветровая нагрузка, IIa, определяется по формуле $q_{\rm H}^{\,c} = q_{\rm O} \, k_{_{\rm E}} \, C_{_{\rm X}} \, .$

Расчетный скоростной напор q_O , Па, для типа местности **Б** при значении v_O^c 18 м/с определяется из соотношения: $q_O = 0.613 \times (v_O^c)^2 = 0.613 \times 324 = 199$ Па.

Статическая составляющая ветровой нагрузки на элемент здания определяется по формуле: $Q_H^S = S n_\Pi q_H^C [\kappa H]$.

Результаты расчета Q_{μ}^{S} сведени в таблицу.

Висота элемента здания	IO M
Площадь наветренного элемента S	I00 м ²
Коэффициент k _z	I,2
Коэффициент лобового сопротивления $c_{ m x}$	I,4

Приложение 4 (продолжение)

Таблица (продолжение)

Коэффициент перегрузки $n_{\mathfrak{q}}$ Скоростной налор $q_{\mathfrak{Q}}$	I,2 I99 Ha
Статическая нормативная ветровая нагрузка, $q_{\rm H}^{\rm C}$	334,3 IIa
Статическая составляющая ветровой нагрузки на элемент здания Q_{H}^{5}	40,I rH

Программы для ЭВМ "Искра-125"

I. Расчет коэффициента сопротивления ${\cal C}_{i0}$ для медковонных акваторий

HAOI HAO2 HAO3 HAC5 MOI AO5 \uparrow x AO2 + AO3 X 8,7_{TO}^{3H}6 + IO \Rightarrow ℓ_n + AOI x 0,4 \Rightarrow AO6 - AO5 \Rightarrow () AO7 AO6 \Rightarrow AO5 AC7 \Rightarrow OOOI \triangleright MOI AC6 \Rightarrow AO5 \Rightarrow A.

2. Расчет коэффициента изменения скоростного напора c виссой $k_{z,s}$ для мелководих акваторий

HAOI HA O2 HAC3 HAO5 HAO9 LIOI AO5 \uparrow x AO2 $\stackrel{?}{=}$ AO3 x x 8,7 $\stackrel{?}{=}$ 3H6 $\stackrel{?}{=}$ 10 \Rightarrow l_n $\stackrel{?}{=}$ AO1 x 0,4 \Rightarrow AO6 $\stackrel{?}{=}$ AO6 $\stackrel{?}{=}$ AO5 AO7 \Rightarrow CCOI $\stackrel{?}{=}$ MOI AO6 $\stackrel{?}{=}$ AO8 AO9 $\stackrel{?}{=}$ 10 \Rightarrow l_n x AO8 \Rightarrow + I \Rightarrow \uparrow S_2 .

Ввод данных

AD1 - Vio

A02 - X

A03 - H

105 - VI

A09 - Z

Вывод но дисплей

S, - C10

S, - K25

СОДЕРЖАНИЕ

		CTD.
ı.	OBUNE HONORESHAR	3
2.	положения по расчету скорости ветра и скоростного	
	HANOPA	3
3.	РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ ВЕТРА НАД ВОДНОЙ	
	поверхностью	5
4.	ФОГМУЛИ ДЛЯ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ХАРАКТЕРИСТИК	
	BETPOBOTO HOTOKA	7
5.	РАСЧЕТ ХАРАКТЕРИСТИК МОРСКИХ ВЕТРОВ В РАЙОНЕ ПОРТА	8
6.	PACTET XAPAKTEPIKTIK EEPETOBIX BETPOB B PANOHE HOPTA	12
7.	ОПРЕДЕЛЕНИЕ СКОРОСТНОГО НАПОРА И ХАРАКТЕРИСТИК	
	воздушного потока над порговыми акваториями	16
ΠP	ENHEROGO. I ENHEROGO.	21
IIP.	иложение 2. изменение скорости морского ветра с	
	BICOTOÑ	23
IIP.	иложение з. номограмма для определения характеристик	
	BETPOBOTO HOTOKA	27
IIP	иложение 4. примеры расчета	28
ПР	PULIONETHUE 5. IIPOIPAMMA ILIE SEM "MCKPA-I35"	33

Подписано к печати 11 мая 1984 года Формат 60 к 84 1/16 Объём 2 печ. п. Заказ 207 Ротатор Тираж 74

Союзморниипроект

125319 Москва, Б.Коптевский пр., д. 6