ОТРАСЛЕВОЙ СТАНДАРТ

АРМАТУРА ТРУБОПРОВОДНАЯ

запорная изменение степени

ГЕРМЕТИЧНОСТИ ЗАТВОРОВ В

SABUCUMOCTU OT YCHOBUM

SKCHILYATAHUM M B IIPOLIECCE

наработки. Ф *оксту 3700* OCT 26-07-2060-83

Вводится впервые

Письмом организации

or <u>16 abyema</u> 1983 r.

<u>винонию</u>срок действия установлен с<u>ой Янбара</u> 1984 г Срок Зействия продлен до 01.07.94.79 грания предпедение станцарта преследуется по закону

I. Настоящий стандарт распространяется на затворы запорной трубо-проводной арматуры клапанного типа с уплотнением металл по металлу разработанные в соответствии с ОСТ 26-07-2042-8I, работающие при давлении $\rm Pp$ от 0,I до 20,0 MIM (от I,O до 200,0 krc/cm²) и температуре до $\rm 500^{0}C$.

Издание официальное Г.Р.8305792 оп 1912 83 Перепечатка воспрещена

- 2. Станцарт устанавливает метод определения допустимой величины протечки через затвор арматуры, подвергающийся контактному износу и износу частицами абразива размером до 40 мкм.
- 3. Величина протечки через затвор арматуры определяется по формуле:

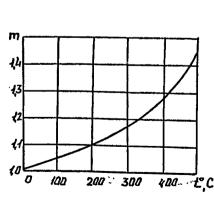
e:
$$Q_i = (\sqrt{Q_{yem}} + \sqrt[3]{(\kappa^m 1) \cdot Q_{yem}} + \sqrt[3]{Q_2})^3 \cdot C^{15}/NUH,$$

где Q_{ycm} - норма герметичности затвора, устанавливающая допустимую протечку через затвор при приемо-сдаточных испытаниях по ГОСТ 9544-**-75**.

При Оуст, принимаемой за О. в формулу подставлять величину погрешности измерения протечки:

 Q_2 - величина протечки среди через затвор вследствие гидроабразивного износа:

— относительная норма герметичности затвора в процессе эксплуатации в зависимости от типа затвора по ОСТ 26-07-2042-81 (плоский ножевой конический), числа циклов срабатывания, диаметра условного прохода Ду и давления рабочей среды Рр:


/// - показатель степени, учитывающий температуру рабочей среды.

4. Относительная норма герметичности К определяется по формуле:

где Q_L^* - герметичность затвора после \mathcal{L} -го числа циклов срабатывания. Численные значения относительной нормы герметичности К в зависимости от числа циклов срабатывания определяются по формуле:

где K_{Ri} - относительная норма герметичности для всех типов затворов. Численные значения в зависимости от давления рабочей среды должны COOTBETCTBOBarb:

Crp.3 OCT 26-07-2060-83 до 0.I MПа (I.O ктс/см²) - табл. I: от 0.I до 0.4 MHa (I.O - 4.0 кгс/см²) - табл.2: от 0.4 до 4.0 MTa (4.0 - 40.0 кгс/см²) - табл.3: от 4.0 до 10.0 MHa (40.0 - 100 кгс/см²) — табл.4: от 10.0 дс 20.0 MMa (100.0 - 200.0 кгс/см²) - табл.5: Кл- относительная норма герметичности для всех типов затворов. Численные значения указаны в табл.6. Кт - относительная норма герметичности в зависимости от типа затвора. Численене значения указаны в таблинах: а) иля затворов типа І в табл.7 б) для затворов типов II. IV. У в табл.8 в) для затворов типа III - в табл.9 5. Значение показателя степени , учитывающего зависимость относительной норми герметичности от температуры рабочей среди. вибирается по номограмме (см. рисунок). Зависимость показателя степени /// от температуры рабочей среды m No Ayen. 14 13 Взам, нев. 12 11 28.05.15

Копировал

и					
i	Инв. № подл.	Подпись и дата	Взам, нив. М	Ипв. № лубл	Подпись и дата
	35-84	28.05.157			

Относительная норма герметичности Кпі

Таблица I

								14011111		
•	Число срабатываний, тыс. цикл.									
Ду, ин	I	2	3	4	5	6	7	8	9	
6	0,920	0,925	0,931	0,945	0,980	1,090	I,238	I,424	1,648	
10	0.919	0,924	0,930	0,944	0,977	1,088	I,236	I,422	I,647	
15	0,918	0,922	0,925	0,943	0,975	1,085	I,234	I,42I	I,646	
20	0,917	0,920	0,930	0,943	0,972	I,083	I,232	1,419	I,645	
25	0,916	0,919	0,929	0,942	0,970	1,080	1,230	I,4I7	I,644	
32	0,914	0,918	0,927	0,940	0,965	I,075	I,225	I,4I4	I,643	
40	0,913	0,916	0,924	0,937	0,960	1,071	1,221	I,4II	I,64I	
50	0,912	0,915	0,927	0,935	0,960	1,072	I,224	1,416	I,648	
65	0,910	0,911	0,918	0,931	0,962	1,079	I,237	I,437	I,678	
80	0,908	0,909	0,915	0,927	0,968	1,089	1,253	1,459	1,708	
100	0,907	0,908	0,914	0,927	0,975	1,102	1,273	I,488	I,747	
125	0,906	0,907	0,913	0,927	0,977	1,108	I,284	I,504	I,770	
I50	0,903	0,907	0,916	0,933	0,972	1,104	I,282	I,506	1,775	
200	0,902	0,908	0,918	0,938	010,1	1,162	1,364	1,615	1,91	

относительная норма терметичности Кий

Таблица 2

Q1HOOH1	ondadn no	Badii nopad ropadramodra i iid									
Ay, uu	Число срабатываний, тыс. цикл.										
Ay, ME	I	2	3	4	5	6	7	8	9		
6	0,920	0,924	0,933	0,951	0,985	1,097	I,248	I,437	I,664		
10	0,919	0,923	0,931	0,946	0,982	I,095	I,246	I,435	I,663		
15	0,918	0,922	0,930	0,945	0,980	I,092	I,243	I,434	1,662		
20	0,918	0,923	0,932	0,946	0,980	1,094	I,246	1,438	1,670		
25	0,917	0,920	0,928	0,944	0,980	I,095	I 249	I 443	1,677		
32	0,915	0,919	0,947	0,943	0,975	1.090	I,245	I,440	1,675		
40	0,913	0,917	0,925	0,939	0,970	1,085	I,240	1,436	I,673		
50	0,911	0,915	0,923	0,937	0.968	1.084	1.241	I,440	1,679		
65	0,909	0,914	0,921	0,935	0,965	1.084	I,245	I,448	I,693		
80	0,908	0,912	0,921	0,936	0,972	1,097	I,265	I,477	1,732		
100	0,906	0,911	0,920	0,935	0,980	1,110	1,286	1,506	1,770		
125	0,905	0,910	0,918	0,934	0,980	1,113	1,291	1,515	I,785		
I 50	0,902	0,906	0,914	0,930	0,980	1.116	1,300	1,530	I,806		
200	0,901	0,906	0,914	0,934	1,025	1,186	1,398	I.664	1.981		

Относительная норма герметичности Кий

Таблица 3

_	Число срабатываний, тыс. цикл.									
-Ду, ии	I	2	3	4	5	6	7	8	9	
6	0,921	0,926	0,936	0,955	1,017	I,145	1,314	1,525	1,777	
10	0,920	0,925	0,935	0,954	I,015	I,143	1,312	I,523	1,776	
15	0,919	0,924	0,034	0,953	1,015	I.144	1,315	1,528	I,783	
20	0,918	0,923	0,933	0,950	I,0I5	I,I45	1,318	1,533	1,790	
25	0,917	0,920	0,929	0,946	1,015	I,I46	1,321	1,538	1,797	
32	0,914	0,916	0,925	0,942	I,015	I,I47	I,323	I,540	1,799	
40	0,911	0,916	0,926	0,945	I,014	I,I48	I,325	I,543	1,802	
50	0,909	0,914	0,924	0,943	I,0I3	1,150	I,327	I,545	I,803	
65	0,907	0,912	0,922	0,938	0,990	1,125	1,305	I,53I	1,803	
80	0,903	0,908	0,917	0,933	0,988	1,126	1,312	I,544	1,82	
100	0,902	0,907	0,916	0,937	I,005	1,155	1,354	I,603	1,902	
125	0,900	0,906	0,916	0,936	1,008	1,162	1,368	I,624	I,93	
150	0,896	0,887	0,894	0,911	1,012	1,174	1,389	I.656	I,970	
200	0,897	0,890	0,902	0,966	I,II5	1,326	1.601	1,937	2,337	

Относительная норма герметичности Клі

Таблица 4

	льная пор	au sopmo			иваний,	гыс. цин		ANADIG T	
Ду, ич	I	2	3	4	5	6	7	8	9
6	0,920	0,922	0,930	0,948	1,030	1,164	1,342	1,562	1,824
10	0,919	0,911	0,928	0,948	I,028	1,163	I,342	I,565	1,831
15	0,918	0,911	0,928	0,948	I,035	I,175	I,366	1,589	I,862
20	0,916	0,920	0,930	0,948	I,028	1,167	1,351	I,579	I,85
25	0,914	0,919	0,928	0,946	1,022	1,163	I,346	I,576	1,850
32	0,913	0,917	0,926	0,943	1,017	1,157	I,342	I,573	I.848
40	0,909	0,912	0,920	0,934	1,005	I,144	I,329	1,560	I,837
50	0,905	0,908	0,916	0,932	0,996	I 134	1,321	I,554	1,83
65	0,902	0,904	0,912	0,928	0.997	I_I43	1,337	I,579	I,870
80	0,900	0,904	0.914	0,931	1,005	1,157	1.360	1,613	1,91
100	0,898	0,903	0,912	0,930	1,030	1.198	1,420	1,696	2,02
I25	0,894	0,898	0,908	0,925	1,035	1,211	I,444	1,732	2,07
I50	0,890	0,891	0,898	0,925	1,058	1,251	1,505	1,819	2,19
200	0,893	0,899	0,917	1,021	1,212	I,479	1,819	2,235	-
	1 '	1 1		1 '	1			1	1

Относительная норма герметичности Кпі

Таблица 5

OTHOCMTO	івная ворі	число орабатываний, тыс. цикл.							5
Ду, ии		·							
	I.	2	3	4	5	6	7	8	9
6	0,919	0,922	0,930	0,948	I,035	I,174	I,357	I.584	I,885
IO	0,918	0,920	0,930	0,946	I,038	1,180	I,367	1,600	1,878
15	0,916	0,918	0,938	0,944	I,038	1,182	I,373	1,610	1,892
20	0,915	0,918	0,927	0,946	I,042	1,191	I,386	1,627	1,915
25	0,914	0,917	0,926	0,945	I,040	1,190	I,386	1,630	1,922
32	0,911	0,915	0,923	0,941	I,035	1,186	I,385	1,632	I,927
40	0,907	0,911	0,920	0,936	1,025	1,176	1,377	I.626	1,923
50	0,904	0,907	0,914	0,931	I,020	I,174	I,378	I,632	I,936
65	0,902	0,904	0,912	0,929	I,025	1,186	1,399	I,664	1,981
80	0,897	0,899	0,907	0,930	1,032	I,203	I,428	I.707	2,041
100	0,893	0,896	0,904	0,935	1,070	1.265	1,521	I,837	2,213
125	0,885	0,886	0,894	0,920	I,060	1,263	1,529	1,859	2,253
I50	0,868	0,870	0,879	0,901	1,039	I,258	I,546	I,904	2,332
200	0,892	0,898	0,942	1,100	1,348	I,684	2,110		-,-,-

I

0,918

0.914

0,913

0.911

0.910

0.909

0.908

0,907

0.907

0,907

0,907

0,907

0,906

0,906

Ay, MM

6

IO

15

20

25

32

40

50

65

80

100

125

I50

200

_			1.1
Относительная	HODME	герметичности	Dn:

2

0,919

0,915

0,917

0,923

0,925

0.915

0.914

0,918

0.918

0.910

0,915

0,915

0,908

0,910

3

0,920

0,916

0,920

0,926

0,932

0,924

0,925

0,931

0,932

0,918

0,925

0,927

0,916

0,917

Число срабатываний, тыс.

0,926

0,923

0,928

0.934

0,946

0,940

0.944

0,950

0.953

0,936

0.946

0,950

0,940

0,944

I.040

I,045

			INUMERIC	. 0						
, тыс. цикл.										
5	6	7	8	9						
0,942	1,018	1,14	1,296	I,486						
0,940	I,024	I,154	1,320	1,522						
0,950	I,04I	1,179	1,355	I,569						
0,955	I,066	1,217	I,408	I,639						
0,970	1,090	I,252	I,456	I,702						
0,975	1,000	I,276	I,478	I,732						
0,990	I,124	I,302	1,526	1,796						
0,995	1,132	I,3I5	I,544	1,819						
1,013	1,158	I,35I	I,59I	1,879						
1,017	I,166	I,363	I,608	1,903						
I,026	I,178	I,377	1,630	1,930						
I,034	1,192	1,399	I,656	I,963						

1,2004 1,412 1,674

1,2088 1,424 1,691

I.986

2,010

Tednune 6

26-07-2060-83

Crp.9

CI

Относительная норма герметичности Кт

Таблица 7

			Число о	рабатыва	ний, тыс	. цикл.			
Ду, мм	I	2	3	4	5	6	7	8	9
6	0,918	0,919	0,920	0,926	0,942	1,018	I,I4	I,296	1,486
IO	0,914	0,915	0,916	0,923	0,940	I,024	I,I54	I,320	I,522
15	0,913	0,917	0,920	0,928	0,950	I,04I	I,I79	I,355	1,569
20	0,911	0,923	0,926	0,934	0,955	I,066	1,217	I,408	I,639
25	0,910	0,925	0,932	0,946	0,970	1,090	1,252	I,456	I,702
32	0,909	0,915	0,924	0,940	0,975	1,000	I,276	I,478	1,732
40	0,908	0,914	0,925	0,944	0,990	1,124	I,302	I,526	1,796
50	0,907	0,918	0,931	0,950	0,995	1,132	1,315	I,544	1,919
65	0,907	0,918	0,932	0,953	1,013	1,158	1,351	1.591	1,879
80	0,907	0,910	0,918	0,936	1,017	1,166	1,363	I,608	1,903
100	0,907	0,915	0,925	0,946	1,026	1,178	1,377	1,630	1,930
125	0,907	0,915	0,927	0,950	I,034	1,192	1,399	I,656	1,963
150.	0,906	0,908	0,916	0,940	1,040	I,2004	1,412	I,674	I,986
200	0,906	0,910	0,917	0,944	1,045	•	1,424	1,691	2,010

Относительная норма герметичности $\mathcal{H}_{\mathcal{T}}$

Таблица 8

Ду, мы	Число срабатываний, тыс. цикл.									
	I	2	3	4	5	6	7	8	9	
6	0,846	0,855	0,886	1,080	1.390	1,816	-	 - -		
IO	0,844	0,860	0,917	1,144	1.500	1.984		_	_	
15	0,841	0,856	0,931	1,180	I,565	2,090	-	-	_	
20	0,838	0,852	0,946	1.216	1.630	_	_	_	_	
25	0,835	0,853	0,961	I,252	1,695	_	-	-	_	
32	0,834	0,848	0,988	1,308	1.790	_	-	_	_	
40	0,831	0,836	1,015	1.368	I.894	-		-	١ ـ	
50	0,828	0,842	10042	I,428	2,000	_	_	_	_	
65	0,825	0,848	I,066	I,480	2,090	_	_	-	i _	
80	0,824	0,854	I,090	I,532	_	-		_	_	
100	0,821	0,852	1,093	I,544	_			_	_	
125	0,818	0,852	1,102	I,568	-		_	_	_	
I50	0,818	0,862	1,132	1,628	_] _ [_		_	
200	0,817	0.868	1.153	1,672	_	_		_	l _	

Crp. T

Относительная норма герметичности Кт

Таблица 9

Ду, мм	Число срабативаний, тис. цикл.									
	I	2	3	4	5	6	7	8	9	
6	0,836	0,852	I,048	I,424	1,980		-	-	<u> </u>	
10	0 833	0,852	1,057	I.448	2,025					
I5	0 827	0,844	1,051	1.448	2,034	-				
20	0,820	0,840	I,060	I.480	2,100	_	_ '		_	
25	0,814	0,836	1,066	I.504	2,150	_	ا ــ ا		_	
32	0,807	0,836	1.087	I.560	_	_	_	_	1 -	
40	0,802	0,844	1,126	I,648		_	_		1 -	
50	0,798	0,852	1,162	I,728	-	_] _		-	
65	0,792	0.860	1.204	I.824		_			-	
80	0,783	0.866	1.219	1,872			_	l -	~	
100	0,777	0,856	1,237	1.920		_		-	—	
I25	0,772	0,864	I,276	2,008			1 -		-	
150	0.763	0.856	1.276	2,024			1 -		-	
200	0.768	0.874	1.318				-	-	-	

OCT 26-07-2060-83

35-84

6. Величина протечки через затвор вследствие гидроабразивного износа Q_2 определяется по формуле:

$$Q_2 = \frac{\Re Dh_2 \cdot \Delta P \cdot 10^7}{7 \cdot 6}$$
, $\alpha v^3 / \omega \mu$,

/1- средняя величина зазора, образовавшегося вследствие гидроабразивного износа. м:

Др − избиточное давление рабочей среди. Па;

д - динамический коэффициент вязкости испытанельной среды. Па.с;

8 - ширина уплотнительной поверхности,м.

Средняя величина зазора /1 определяется по формуле:

где № - ресурс затвора при зеданной удельной нагрузке на ущлотнение, цикл;

✓- скорость потока рабочей среды в затворе, м/с;

 χ - объемный вес абразивных частиц, кг/м²:

 Δt - время эксплуатации затвора в откритом положении, с;

у -процент абразива, содержащийся в объеме среды;

Q - ускорение свободного падения, м/с;

HB - твердость по Бринало, кг/м 2 ;

🕉 - средний диаметр уплотнения, м.

Величина протечки через затвор арматуры, определённая по приведенной методике, не должна превышать величину протечки, регламентированную исходными требованиями на разработку арматуры. Пример расчёта приведен в приложении.

Ψ 043

ПРИМЕР РАСЧЕТА РЕРМЕТИЧНОСТИ ЗАТВОРА В ПРОЦЕССЕ SKCIULY ATALIAN.

І. Задача расчета - определение величины протечки через затвор.

2. Исходные данные:

Ш (ножевой) Тип затвора 5.70-2 Лиаметр условного прохода Лу. м 5.TO-4 Пирина уплотнения в . м 43.IO⁷ Твердость материала уплотнения. НВ число пиклов наработки, пикл TOOO Время эксплуатации А с . с 31,106 Исходная норма герметичности Ачет см3/мин 1.5 Рабочая среда BOIR Давление рабочей среды Pp. МПа 4.0 Температура рабочей среды. ОС 90 Удельный вес абразивных частиц, кг/м³ 2.6.103 Процент абразива содержащийся в объеме \geq . M^3 I5.10⁻¹⁰ Скорость потока среды через затвор V.м/с I

Испытательная среда воздух

Давление испытательной среды 🛕 мпа 0.6 Вязкость испытательной среды // "Па.с I.84.I0⁻⁴

3. Расчет

3.1. Ппределяем среднюю величину зазора, образовавшегося вследствии гидроабразивного износа, по формуле:

$$h_2 = K \frac{\sqrt{3} \cdot \chi \cdot 1 \cdot \Delta t \cdot z}{2g \cdot 16 \cdot 18 \cdot 6 \cdot (70)^2}$$

$$h_2 = \frac{10^{-3} \cdot 16 \cdot 10^3 \cdot 0.7 \cdot 31}{2 \cdot 10 \cdot 16 \cdot 43 \cdot 10^7 \cdot 5 \cdot 10^{-4} (3.14 \cdot 5.10^{-2})^2} = 0.0499 \cdot 10^{-5} \approx 0.49 \text{ MMM}$$

 $K = \frac{0.909}{0.007} \cdot 0.798 = 0.800$

3.2. Протечка вследствие гидроабразивного износа определяется

по формуле:

$$Q_2 = \frac{370h_2 \Delta P}{12 7 5}$$

$$Q_2 = \frac{3.14 \cdot 5 \cdot 10^{-2} \cdot 124, 25 \cdot 10^{-21} \cdot 0.6 \cdot 10^6}{12 \cdot 1.84 \cdot 10^{-4} \cdot 5 \cdot 10^{-4}} = 10.59 \cdot 10^{-9} \frac{M^3}{E} = 0.63 \frac{LM^3}{MUH}$$

 $K = \frac{Kni}{Kn} \cdot K_T$, где $K_T = 0.798$ по табл. 9

3.4. По номограмме определяем /77 для температури $90^{\circ}{\rm C}$

m=1,05

3.5. Велична протечки через затвор определяется по формуле:
$$Q = (\sqrt[3]{0.05} + \sqrt[3]{(\kappa^m - 1)Qucx})^3$$
 $Q = (\sqrt[3]{1.5} + \sqrt[3]{0.8} + \sqrt[3]{0.8} + \sqrt[3]{0.63})^3 = 2.24 \text{ см}^3/\text{мин}$

4. Заключение.

Величина протачки через затвор 2,24 см³/мин удовлетворяет (не удовлетворяет) разработчика затвора

line. Ne Ayon Hognach it g.

B324, 4188, No.

5. 26 FOLL.

"ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ"

Обозначемие НТД, на который	Номер пункта, подпункта,
дана ссылка	перечисления, приложения
OCT 26-07-2042-8I	п•І